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Cyanide is a well known potent inhibitor of haem proteins, including haem

oxygenase (HO). Generally, cyanide coordinates to the ferric haem iron with a

linear binding geometry; the Fe—C—N angle ranges from 160 to 180�. The

Fe—C—N angle observed in the crystal structure of haem–HO bound to

cyanide prepared at alkaline pH was 166�. Here, it is reported that cyanide can

bind to the haem iron in HO in a bent mode when the ternary complex is

prepared at neutral pH; a crystal structure showed that the Fe—C—N angle was

bent by 47�. Unlike the ternary complex prepared at alkaline pH, in which the

haem group, including the proximal ligand and the distal helix, was displaced

upon cyanide binding, the positions of the haem group and the distal helix in the

complex prepared at neutral pH were nearly identical to those in haem–HO.

Cyanide that was bound to haem–HO with a bent geometry was readily

photodissociated, whereas that bound with a linear geometry was not

photodissociated. Thus, alternative cyanide-binding modes with linear and bent

geometries exist in the crystalline state of haem–HO.

1. Introduction

Cyanide binds tightly to the ferric haem iron and inhibits the binding

of intrinsic ligands to the haem iron of a given haem protein: e.g. of

molecular oxygen to the haem iron in haem proteins such as cyto-

chrome c oxidase. It is known from the crystal structures and spec-

troscopic and theoretical studies of several haem proteins that the

coordination of cyanide to the ferric haem iron at the distal site is

stabilized by the linear binding geometry; the Fe—C—N angle is

between 160 and 180� (Bolognesi et al., 1999; Nardini et al., 1995),

which is similar to the binding of CO to the ferrous haem iron,

whereas O2 or NO binds to the haem iron with a bent geometry (the

Fe—O—O angle is less than 140�). Of the 43 crystal structures of

cyanide-bound haem proteins at resolutions higher than 2.0 Å that

have been deposited in the Protein Data Bank, seven crystal struc-

tures showed unusual bending angles in the haem–cyanide binding

mode (Bolognesi et al., 1999; Nardini et al., 1995; Blair-Johnson et al.,

2001; Sjögren & Hajdu, 2001; Fedorov et al., 2003; Evans et al., 1994;

Neya et al., 1993; Sen et al., 2004). The orientations of the diatomic

ligands determined by X-ray crystallography, however, remain

ambiguous owing to the limited resolutions and the anisotropic

thermal vibration of haem and its ligands (Stec & Phillips, 2001).

Here, we report a new cyanide-binding mode in rat haem

oxygenase (HO) that differs from that observed previously in HO

bound to haem and CN� (CN�–haem–HO) prepared at alkaline pH

(Sugishima et al., 2003). HO is an enzyme that catalyzes the cleavage

of haem by using O2 and reducing equivalents to produce biliverdin

IX�, iron and CO (Tenhunen et al., 1968). The effect of diatomic

ligand (X–Y) binding on the conformation of the haem pocket in HO

in complex with haem (haem–HO) differs depending on the bending

angle of the ligand (Sugishima et al., 2003); when the Fe—X—Y angle

is close to linear, the haem is shifted together with the proximal ligand

towards the inside of HO and the distal helix is shifted in the opposite

direction, which is accompanied by movement of a nearby helix and
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breakdown of one of the salt bridges stabilizing the haem binding to

HO, whereas large structural changes did not occur when the

Fe—X—Y bond is severely bent. It is likely that such a conforma-

tional change occurs to avoid steric hindrance between the distal

ligand and the distal helix. Thus, the linear or bent binding of the

diatomic ligand to the haem iron can be validated for HO based on

the conformation of haem pocket, even if the resolution of the X-ray

analysis is approximately 2.0 Å.

2. Experimental

CN�–haem–HO was prepared and crystallized as described else-

where (Sugishima et al., 2003). CN�–haem–HO crystals were

prepared at several pH values by soaking cocrystallized CN�–haem–

HO for a few minutes in each of the following solutions: 5 mM KCN,

crystallization solution (4 M sodium formate and 50 mM potassium

phosphate pH 6.8) containing 5 mM potassium cyanide; 10 mM KCN,

crystallization solution containing 10 mM potassium cyanide; 20 mM

KCN, crystallization solution containing 20 mM potassium cyanide;

40 mM KCN, crystallization solution containing 40 mM potassium

cyanide; 50 mM KCN, crystallization solution containing 50 mM

potassium cyanide; 5 mM KCN pH 9.7, crystallization solution

containing 5 mM potassium cyanide in which potassium phosphate

was replaced with sodium borate pH 9.7. Each crystal was isomor-

phous to the previously reported crystal of CN�–haem–HO (50 mM

KCN pH 9.7). Diffraction data for the CN�–haem–HO crystals

obtained at several pH values were collected using synchrotron

radiation (� = 0.750 Å) at 100 K at the BL41XU beamline in SPring-8

with a MAR CCD detector. Diffraction data were processed, merged

and scaled using the HKL-2000 program suite (Otwinowski & Minor,

1997). The refinement of CN�–haem–HO pH 6.8 was performed with

CNS (Brünger et al., 1998) in a similar manner as for the previously

reported CN�–haem–HO pH 9.7 (Sugishima et al., 2003). Diffraction

statistics and refinement statistics are given in Table 1.

Diffraction data for the CN�–haem–HO crystals in the dark and

under illumination provided by a red laser were collected using

synchrotron radiation (� = 1.000 Å) and an open-flow helium cryostat
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Table 1
Summary of crystallographic statistics.

Values in parentheses are for the outermost shell.

Photolysis of CN�–haem–HO (pH 6.8) Photolysis of CN�–haem–HO (pH 9.7)

CN�–haem–HO (pH 6.8) In the dark Laser on In the dark Laser on

Diffraction statistics
Unit-cell parameters (Å) a = 65.38, c = 121.03 a = 65.11, c = 120.33 a = 65.34, c = 120.40
Space group P3221
Resolution range (Å) 50.0–1.85 (1.92–1.85) 20.0–2.0 (2.07–2.00) 20.0–2.0 (2.07–2.00)
No. of observations 215344 108693 107876 97643 92256
No. of unique reflections 25213 19018 19152 18922 18744
Redundancy 8.5 5.7 5.6 5.2 4.9
Completeness (%) 95.7 (89.3) 92.3 (87.2) 92.8 (92.2) 91.1 (86.9) 90.2 (84.3)
Mean I/�(I) 15.6 (5.8) 13.8 (3.5) 13.4 (3.4) 15.3 (3.7) 17.4 (3.8)
Rsym† 0.046 (0.335) 0.080 (0.423) 0.083 (0.417) 0.060 (0.400) 0.061 (0.420)

Refinement statistics
R/Rfree‡ 0.194/0.218 0.210/0.224 0.208/0.225 0.215/0.252 0.214/0.245
R.m.s. deviations from ideality

Bond lengths (Å) 0.006 0.007 0.007 0.007 0.007
Angles (�) 1.138 1.132 1.117 1.149 1.156

† Rsym =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where hI(hkl)i is the mean intensity for multiple recorded reflections. ‡ R =

P
jFobsðhklÞ � FcalcðhklÞj=

P
jFobsðhklÞj. Rfree is the

R value calculated for 10% of the data set not included in the refinement.

Figure 1
Two different cyanide-binding modes in HO. The Fo � Fc map omitting the distal ligand is superimposed on the ball-and-stick model around the haem group. (a) The bent
binding mode (5 mM KCN pH 6.8). (b) The linear binding mode (50 mM KCN pH 9.7; Sugishima et al., 2003).



(Nakasako et al., 2002) at�35 K at the BL44B2 beamline in SPring-8.

Data collection was carried out as for the CO-bound haem–HO

complex (CO–haem–HO; Sugishima et al., 2004). For data collection

under illumination, the crystal was continuously illuminated for

10 min before and during data collection using a He–Ne laser

(15 mW, 632.8 nm; Melles Griot, Irvine, CA, USA). To increase the

signal-to-noise ratio of the difference Fourier map, the data sets for

CN�–haem–HO in the dark and under illumination were collected

from the same crystal under the same conditions. Before calculating

the difference Fourier maps, the models of CN�–haem–HO pH 6.8

and pH 9.7 were independently refined using the diffraction data

collected in these experiments individually.

3. Results and discussion

The crystal structure of haem–HO bound to cyanide (CN�–haem–

HO) was newly determined at neutral pH. Notably, the Fe—C—N

angle was bent by 47� (Fig. 1). This binding mode differed from that

in the previously determined structure of CN�–haem–HO at alkaline

pH (Sugishima et al., 2003), in which the Fe—C—N angle was almost

linear. We previously reported that upon cyanide binding at alkaline

pH, the haem together with the proximal ligand shifted in one

direction and the distal helix shifted in the opposite direction, which

was accompanied by movement of the G-helix, Lys179 and Arg183 of

which are involved in salt bridges to a haem propionate. These

movements caused conformational changes of this propionate and

the Lys179 side chain and the breakdown of one of the salt bridges

(between Lys179 and the propionate). However, none of these

conformational changes occurred upon cyanide binding at neutral pH

as shown by the present study (Fig. 2); the unusual bending in the

Fe—C—N angle did not produce steric hindrance between the distal

helix and the cyanide bound to the haem iron. The structure around

the haem-binding site in CN�–haem–HO at neutral pH is very similar

to that in ferric haem–HO at alkaline pH (Sugishima et al., 2000),

indicating that the structural changes described above are not a

consequence of the pH difference.

A linear Fe–cyanide binding geometry was observed in the ternary

complex prepared at a KCN concentration of 20–50 mM at pH 7.8–

9.7, whereas the bent mode was observed with a KCN concentration

of 5–10 mM at pH 6.8–7.1 (data not shown). A linear binding

geometry was also observed when the pH was changed to alkaline at

5 mM KCN. Thus, it is likely that the cyanide-binding mode of haem–

HO in the crystalline state depends on the pH.

Interestingly, X-ray diffraction analysis for the CN�–haem–HO

crystals in the dark and under illumination indicated that cyanide

binding in the bent mode was light-sensitive. Difference Fourier maps

clearly showed that the cyanide at the distal side of the haem at

neutral pH was dissociated from the haem iron by laser irradiation,

but did not dissociate at alkaline pH under the same experimental

conditions (Fig. 3). The location of the cyanide dissociated from the

haem iron at neutral pH was not identified, although CO was trapped

in the hydrophobic cavity of the distal haem pocket when the crystal

of the CO–haem–HO complex was irradiated under similar condi-

tions (Sugishima et al., 2004). The reason why CN� was not trapped in

the hydrophobic cavity may be that CN� has anionic character,

unlike CO. The observation of differing light-sensitivities of the

Fe—CN� bonds depending on the binding geometry supports the
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Figure 3
Photodissociation of cyanide. A difference Fourier map calculated between data
sets obtained in the dark and under continuous illumination from a red laser is
superimposed on the ball-and-stick model around the haem group. Blue and red
indicate newly appeared and the diminished densities, respectively (contoured at
�3�). (a) 5 mM KCN pH 6.8. (b) 50 mM KCN pH 9.7.

Figure 2
Superimposition of haem–HO (green; Sugishima et al., 2003), CN�–haem–HO
(yellow, pH 6.8) and CN�–haem–HO (blue, pH 9.7). Except for the proximal
histidine, only the C� traces are shown for clarity. The crystal structures of CN�–
haem–HO at pH 6.8 and pH 9.7 were superimposed on the structure of haem–HO
so as to minimize the r.m.s. deviations of C� atoms. Following the distal helix is the
G-helix, which contains the basic residues (Lys179 and Arg183) involved in the salt
bridges to haem propionates.



existence of the alternative cyanide-binding modes in the haem–HO

crystal.

In the present analysis, we have identified alternative binding

modes of cyanide in crystals depending on pH (bent at pH 6.8–7.1,

linear at pH 7.8–9.7). The bent binding mode of cyanide observed in

the present study may represent a state preceding the previously

reported conformational change in the haem pocket that results from

cyanide binding with a linear binding mode (Sugishima et al., 2003). It

is uncertain at present why the cyanide-binding mode in the crys-

talline state changes depending on pH, but it may be related to the

rigidity of the distal helix and the stabilities of the salt bridges

between the haem propionates and basic HO residues. The binding

mode of cyanide to ferric haem–HO should be determined by the

energetic balance between the cost of the conformation change of

haem–HO seen in the linear binding mode and that of the unusual

bent binding of cyanide to the haem iron; at neutral pH, the cost of

the conformation change would be increased.
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Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-
Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read,
R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54,
905–921.

Evans, S. V., Sishta, B. P., Mauk, A. G. & Brayer, G. D. (1994). Proc. Natl Acad.
Sci. USA, 91, 4723–4726.

Fedorov, R., Ghosh, D. K. & Schlichting, I. (2003). Arch. Biochem. Biophys.
409, 25–31.

Nakasako, M., Sawano, M. & Kawamoto, M. (2002). Rev. Sci. Instrum. 73,
1318–1320.

Nardini, M., Tarricone, C., Rizzi, M., Lania, A., Desideri, A., De Sanctis, G.,
Coletta, M., Petruzzelli, R., Ascenzi, P., Coda, A. & Bolognesi, M. (1995). J.
Mol. Biol. 247, 459–465.

Neya, S., Funasaki, N., Sato, T., Igarashi, N. & Tanaka, N. (1993). J. Biol. Chem.
268, 8935–8942.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
Sen, U., Dasgupta, J., Choudhury, D., Datta, P., Chakrabarti, A., Chakrabarty,

S. B., Chakrabarty, A. & Dattagupta, J. K. (2004). Biochemistry, 43, 12477–
12488.
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